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Abstract—We have constructed an analytical model from first principles that will permit the prediction of
the sound fields scattered by spherical elastic shells covered with a layer of viscoelastic materials, which
contain an inner fluid different from the outer fluid surrounding the laminated structure. This model is
constructed as a sound/structure boundary-value-problem which accounts for sound fields interior to the
submerged shell. The model is exact insofar as the equations of linear elasticity/visco-elasticity can be
considered accurate descriptors of the vibrations of the laminated structure. Any conceivable damping level
present in the viscoelastic layer, can be quantitatively accounted for in the predictions. We have
successfuly separated the shape factors (or backgrounds) from the re-radiated (or resonance) portions that
combine to make up each modal contribution to the structure’s backscattering cross section, in the manner
of the Resonance Scattering Theory (RST). We have quantitatively analyzed the damping effect the coating
has on the modal resonances, either considering each mode individually or after adding them all together in
the cross section. Sound penectration into this target takes place through the discrete spectral windows
centered at the (rigid, in this instance) resonances of the fluid-loaded structure, and we show how each such
resonance produces each one of the rapid oscillations present in the sonar cross section. We display many
calculations of the (summed) cross section, of the modes or partial waves contained within it, and of the
backgrounds (shape factors) and resonance (re-radiated) portions which makeup each mode. This is another
realistically modelled situation for a penetrable structure, that successfuly fits in the neighborhood of
acoustic behavior near the idealized extreme of rigid impenetrability, where the RST is most useful.

INTRODUCTION

The interaction of sound waves with elastic spherical shells imnmersed in fluids is a well plowed
subject that seems to have started with the pioneering work of Junger[1-3]. The in-vacuo
vibrations of layered spherical shells were studied by Kalnins[4] who later extended and
reviewed 5] the whole subject of vibrating shell theories excluding the acoustic interaction
aspects. A variety of shell theories have been introduced to describe the behavior of fluid-
loaded spherical shells{1, 6, 7] while some investigators have analyzed the transmission and/or
reflection of sound waves through thick spherical shells by means of the exact equations of
linear elasticity [8].

Some of the comprehensive work of Hickling studied the echoes returned by submerged
spherical shells[9-11] theoretically, experimentally, at low and high frequencies, and even using
frequency-modulated sound pulses as incident waves. Monostatic and bistatic cross-sections of
partially insonified submerged spheres were recently studied using the physical optics
method[12] and in another instance, by means of an exact theory of finite sound beams{13]
which are techniques easily extended to the case of spherical shells. Transient interactions of
plane sound waves with spherical shells were analyzed by Huang[14] although most of the
available work on sound scattering by elastic shells has used incident continuous waves. We are
not aware of the existence of much work dealing with any type of incident continuous acoustic
wave that is not plane.

If the spherical shell is made of sound-absorbing (i.e. viscoelastic) material, one finds only a
limited amount of pertinent publications. For the case of “impedance covered” spherical shells,
some work has been reported in the foreign literature{15a], where in depth studies on
multilayered shells have been available for some time{15b]. A detailed scattering analysis of
impedance covered spheres has also been recently published at this Center[16].

The investigation of low-frequency seismic wave propagation through the Earth’s crust has
led seismologists to develop extensive layered spherical shell models{17] of the Earth that
sometimes can be made to account for thousands of layers. These models have obvious uses in
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the analysis of scattered fields from large layered spheres. If some of the upper layers are liquid
and some of the bottom ones are made to represent solid, possibly porous sediments, then the
models serve to study the ocean bottom{18, 19] from the acoustically reflected field.

Very simple absorbing situations such as an absorbing sphere in water under planewave
insonification, have been briefly studied in superficial ways[20,21] and even in an erroneous
way[22]. Air-filled cylindrical shells covered with viscoelastic layers, submerged in water and
insonified at beam aspects by plane sound waves, have been the subject of some recent analysis
both at low frequencies{23, 24] as well as at high{25]. The effect of small fluid-filled cavities
sometimes present in the outer viscoelastic layer has also been studied under the light of the
new Resonance Scattering Theory for cavities in solids[26]. This Resonance Theory has also
been used to study some aspects of the reflection of plane sound waves from metallic shells in
water[27]. It now follows that a basic problem that still remains to be posed and solved is that
of a submerged air-filled spherical elastic shell covered with a layer of visocelastic material, and
subject to plane-wave insonification. In the present paper we will analyze this sound/structure
interaction problem as well as the effect the absorptive characteristics of the coating have on
the backscattered cross-section or “echo” of the spherically layered structure. The absorbing
layer is assumed to have a homogeneous composition and viscous coefficients of known or
given values. This viscoelastic layer is also assumed to be ideally bonded to the elastic shell.
Anyone familiar with the processes usually followed to bond rubber to steel[28] is aware of the
difficulties involved in this assumption. The resulting complex boundary-value problem will be
studied by means of the exact equations of viscoelasticity or elasticity that govern the coating
and the shell motions, respectively[29]. The solutions in each one of the layers are coupled at
the interfaces between them, by suitable boundary conditions to be introduced in due time.
Therefore, we have developed an exact model for the complete analysis of the sound/structure
interaction problem, insofar as the equations of linear elasticity/viscoelasticity describe the
motion of the bilaminar shell structure. All absorption levels that could possibly be present in
the outer absorbing layer, are accounted for by means of this approach. Since this approach and
solution are exact, any approximation introduced later on to characterize the shell motions will
have to be compared to the present solution which will become the norm or calibration
standard. Suitable shell theories could later be used to simplify the present approach. We have
also analyzed the modal contributions that add up to the sonar cross-section in the manner
typical of the Resonance Scattering Theory(30,31] in order to separate the shape and re-
radiation components of each of its constituent normal modes; a process that is quite
enlightening in the understanding of the scattering mechanism taking place around and inside
the coated shell. Finally, we have analyzed some aspects of the effect the absorption damping
in the outer coating layer has on the shell and on the coating resonances which cause the
re-radiation.

VISCOELASTICITY BACKGROUND

The field equations of linear dynamic viscoelasticity in terms of displacements and in the
Kelvin-Voigt viscoelastic model are

- e € vty - 1 62-
[1+ﬁx-§t~]v2u+[" *”"][Hi +;‘]:%v<v-u)=?3{} (1)

where A, u, are the elastic Lamé constants, A,, u, are their viscous counterparts, and
¢, = (ndp)'? is the speed of shear waves in the viscoelastic medium. The above relations reduce
to the standard Navier equations of elasticity in the absence of viscosity. For the axially
symmetric case in spherical coordinates, of interest to this paper, the above equations take the
following particular form
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where
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and where time-dependence of the form e ™ has been assumed wherever pertinent.
We have shown earlier [29] that eqns (2) are automatically satisfied provided that we introduce

two scalar potentials, ¢, ¢ which satisfy Helmholtz equations with complex propagation constants
as follows

(Vi+ ko =0, (Vig+xDy=0. 6)
The (complex) wavenumber «, was defined in eqn (5) and analogously, we define
ki = W' llci(1 - iwM)), M =\, +2p,)(\ +2p,) Y
to be the (complex) wavenumber of dilatational waves. These waves have speed ¢, =
{(A +2u,)p}".
All the non-vanishing components of the displacement and the stress fields can be obtained

from the two potentials ¢, ¢ and the pertinent relations are as given below. For the
displacements:
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and for the stresses:
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The procedure to solve the coupled eqns (2) is to solve eqns (6) subject to suitable (stress or
displacement) boundary conditions making use of eqns (9) and (8) and then construct the
displacement fields from the potentials by means of eqns (8). Anticipating results of the
following section we can state that the boundary conditions imposed on the three interfaces of
the boundary value problem to be solved next, will determine the ten sets of constants
appearing in the general solutions.
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2. NORMAL-MODE SOLUTION IN ALL LAYERS

An elastic spherical shell of inner and outer radius a and b respectively is coated with an
absorbing layer of outer radius c. This absorbing layer is ideally bonded to the elastic metal
shell. The shell contains air in its interior and the whole structure is immersed in water. The
Kelvin-Voigt modkl controls the viscoelastic behavior of the coating layer. This layer is the
only one that absorbs sound energy. A plane acoustic wave is incident on the coated shell from
its South pole, and it is scattered by it. We wish to determine the scattering cross-section of the
structure particularly in the backscattering direction 8 = 7. We also want to quantitatively
determine the effect produced on the object’s sonar cross-section by various amounts of
viscous losses present in the coating layer. The four media in question are: (1) the water, (2) the
viscoelastic coating, (3) the metal shell, and (4) the interior air. (See Fig. 1).

The pressure wave incident of the structure’s South pole is

Pine = Po€ ' 2 i"(2n + 1)P,(cos 8)ja(k,r) = poe'®17 ooV (10)

n=0

where k,=w/c, and c, is the sound speed in water. Since this problem has no azimuthal
dependence, the total pressure field in the exterior medium (1) is:

pr=poe™™ 3 i"(2n + )P,(cos O)ljn(kir) + boh OkyP)] (1)

n=_0
where spherical Hankel functions of the first kind are chosen to have outgoing scattered waves

from the structure and b, is a coefficient to be determined from the boundary conditions.
Displacements associated with this pressure field are found by the relation

1 adp
w__1 _3m
Ur p,w2 ar (12)

where p; is the density of the exterior fluid. The two scalar potentials ¢,, i, in the viscoelastic
coating (i.e. medium (2)) which satisfy eqns (6) are

a1, 6,t) = poe™™* ZO i"(2n + 1)P,(cos 8)[Crin(ka,r) + duynlkyr))

=

Pa(r, 6,1) = py gt E_o i"(2n + 1)Pa(cos 6)[enjn('<szr) + f,.y"(K,zr).] (13)
!
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Fig. 1. The geometry of the structure and the incident waveform. Spherical air-filled, steel shell, coated
with a rubber layer, immersed in water and insonified by a plane pressure wave incident on its South pole
6=m).
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The displacement and stress components associated with these potentials can be found in
medium (2) by means of eqns (8) and (9) respectively. The elastic solutions in the spherical shell
are found in a way analogous to eqns (13), and the result is,

és(r,8,1) = pe ™ 20 i"(2n + 1)P,(cos 0)[gnin (ks 1) + hnya(kyr)]

¥s(r, 6, ) = ppe™ 20 i"(2n + 1)Pa(cos 0)[1njn(k,,r) + muya(k,r)] (14)

where the wavenumbers k,, = w/cy;, and k, = w/c,, are now real numbers. The displacement and
stress components in medium (3) are found from eqns (14) by means of sets of equations
analogous to eqns (8) and (9) but with vanishing viscous coefficients, A,, u,,. Finally, the
solution for the pressure fleld in the fluid interior to the structure (i.e. medium (4)) is given by

o

pur, 8,1)=poe™™ 3, i"(2n + 1)P,(cos 8)qujn(kar) (15)

n=0

where k.= w/c,, and c, is the sound speed in medium (4). Displacements and pressures are
related in medium (4) by an equation analogous to eqn (12). We note that all the potentials in the
four layers contain a total of ten sets of constants (i.e., b, C,, - . . ;) which must be determined
from ten boundary conditions at the interfaces r=a, r=b, and r =c.

The ten boundary conditions are as follows.

Atr=c,
D= uP=u?  13=0
Atr=b»,
uP=u, uP=uf, (D=r® PR (16)
Atr=a,

o _ 3 _ @ () .
Tr = ~Par u:"=u,, Try =0.

Equations (8) and (9) or their non-viscous counterparts, are to be used in these boundary
conditions together with the solutions in eqns (11)<(15). The boundary conditions are merely
statements of continuity of stresses and/or displacements across the three interfaces, and they
produce a set of ten equations in the ten unknown coeflicients as follows

dy dyy dys dy dis 0 0 0 0 0 b, -I At

d2| dzz dn du d25 0 0 0 0 0 Cn A’

0 dy dy dy dis O 0 0 0 0 d, 0

0 do dp du dis d deo dg dy O €n 0

0 ds; ds3 ds dss ds¢ ds7 dsg dsy O fa =10 an
0 der dgy dey des des dg des dgs 0 8n 0

0 dp dp du dis dyg dpp du dyp 0 h, 0

6 0 0 o0 O dye dyy dg  dege  dsao i, 0

0 0 0 0 0 de dyy dog do doye m, 0

LO 0 0 0 o die dws dies dios 0 i qn 0 i

The sixty non-vanishing coefficients d; and A%, A% are all listed in Appendix A, after a
non-dimensionalization procedure discussed elsewhere[23] has been applied to render dimen-
sionless the 10 x 10 determinant of the matrix D. Any of the unknown coefficients can then be
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obtained by means of Cramer’s rule. If |B,| is the determinant which results when the first
column of the 10 X 10 determinant of the matrix D in eqn (17) is replaced by the column vector in
the right side of eqn (17), then coefficient b, is

by = |Bn|/|Dn|’ (18)
and the analogously with all the others.

3. THE DIFFERENTIAL AND SONAR SCATTERING CROSS SECTIONS
The differential scattering cross-section in this azimuthally symmetric situation is defined as

d_o' da' li psc|]
a0 de r-an[ Dinc (19

Using the incident and scattered pressure fields given in eqn (11) and then using the far-filed
asymptotic expansion

w (—l)n ik,r
hy (klr)—r:T Fr © v, (20)
yields eventually
do _ 1 | i
TR “20 (2n + )b, P,(cos 8) , @21

which is the differential scattering cross-section, which only depends on one of the ten
coefficients (viz, b,).
The sonar cross-section of monostatic (i.e. § = 7) sonars is,

o =4 [‘;‘;]M 2 I 2

where we have used the relation P,(—1) = (—1)". The backscattering cross-section ¢ is denoted the
“sonar” cross-section since it displays the features and levels used by a distant sonar system to
“see” the coated structure discussed here. Eqgs. (21) and (22) can be made non-dimensional as
follows:

4d ® )
?a% = |T(21—C NE-O (2" + l)buPn(COS 0)| = If(o)lZ, | (23)
2

Series of this type are slowly convergent, and many terms are needed to plot them in wide
k,c-ranges. For k,c <20, plots of the above equations can be produced without great com-
putational difficulty.

The following numerical values were used for the materials and the geometry. The radii are:
a=125.40cm, b =26.3525 cm, and ¢ = 26.67 cm. This corresponds to a 1/8 in coating on a 3/8 in
shell having a 10in. inner radius. Medium (1) is water of parameters p,=1.0g/lcm’, ¢, =
1.5x 10’ cm/sec, and k; = w/c;. Medium (2) is rubber of parameter p,=1.13glem’, A, =
2218 x 10" dyn/em?, p,, = 1.0 X 10° dyn/cm?, and A,,= Flw, p,, = F}/w. The quantities F and F¥
are numerically varied over suitable ranges discussed below. The speed of dilatational and of
shear waves are found by the relations

€, = [, + 281017, €, = [afP)"?, 25

and they are c,=~14x10°cm/sec and ¢, =0.94x 10‘cm/sec. The (complex) propagation



Resonances in the sonar cross sections of coated spherical shells 1089

constants for dilatational and shear waves in medium (2) multiplied times the outer coating radius
¢ can be expressed in terms of the propagation constant of the outer medium k, as follows

ch=ﬁ kic K c=ﬂk+c' (26)
T e, VI-I(F+2FDlpcl) * ¢, VI-i(Fpyc?)

Medium (3) is steel of parameters p;=7.84g/cm’, A, =113x10"dynfcm’, p,, =
7.54x 10" dynfcm’, and k,, = wlcy, and k, and k, = w/c,. The wavespeeds c4, c,, are deter-
mined from relations analogous to eqns (25). Medium (4) is air at 20°C of parameters
ps=0.0012 g/cm?, c,=0.344 x 10° cm/sec and k= w/c,. Levels of viscosity in the coating (i.e.
medium (1)) are achieved by numerically varying the parameters F and F* as follows:

Table 1.
Basic 8b) 8d) = 7a) Tc)
F 0 8752x 100 1.243x10°  1.283x10°
F% 0 10’ 10’ 6x 10°

The labels 8b), 8d), etc. .. correspond to those in Table 2 of Ref.[30].

4. ISOLATION OF THE MODAL RE-RADIATING COMPONENTS.

Each modal contribution (n =0,1,2,...) such as those in Fig. 3, adding up to the cross-
section in Fig. 2, can be split into two components. That was one of the earliest findings of the
body of knowledge now called the “Resonance Scattering Theory”[30-32]. The two com-
ponents are a smooth background or shape factor, which accounts for the reflection from the
structure as if it were impenetrable (i.e. without interior fields) and another component due to
the interior structural resonances of the bilaminar shell, which causes it to re-radiate sound
energy. Therefore, acoustic fields penetrate into the structure only through a countable discrete
set of narrow spectral windows centered at the natural frequencies of the coated target. Away
from these resonances, the acoustic behavior of the structure is as if it were perfectly
impenetrable. Thus, the masking effect of the coating will manifest itself by affecting only the
re-radiating resonance components of each modal contribution to the shells's sonar cross-
section. The modal backgrounds, which depend on the shell shape, will not be altered by the
presence of the coating layer in any way. In what follows we will show how this decomposition
into shape-factors and re-radiating resonances is achieved in this case. We introduce the
definition of the scattering coefficient S, as follows

Sa=1+2b,. @n

This is merely a particular case of the matrix equation relating the S and T matrices[33). It is
now possible to write the coefficient b, given in eqn (18) by expanding the determinants |B,|
and |D,| along their first columns, as follows’

_1(s, - 1= AtD} - AtD?
b3 D=4, D=4, DF @

where D}' and D% are the minor determinants of the elements d,, and d,,, shown in egn (17),
and listed in Appendix A. Substituting the values of A¥, A%, d,,, and d,, from Appendix A
yields,

g k2 c*h@(k,c)DY + kych@ (k,c) D2
S, =~ : (29)
% k2 c*hP(k,c)D! + kych P (k,c)DY
2
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Fig. 2. Normalized (summed) backscattering cross section (ofmc’= |Zn f.(1r)|2) of a coated, air-filled, steel

spherical shell of outer radius c, in water, versus non-dimensional frequency k(c. Thirty partial waves

(n=0,1,2...) are added to generate this plot. Some of the observed “resonance features” in this graph
originate from the shell while some others are caused by the coating layer.

a = 254000 b = 263525 ¢ = 26.67 F = 0.

"o(ﬂ" F1 =0 n=0
2.00
1.00
) J. ) S Z 1 k1c
i1 0.00 400 8.00 12.00 16.00 20.00
2.00 n=1
1.00

12.00 16.00 20.
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25,
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ij
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Fig. 3. Plots of the first five (n =0, 1,2, 3, & 4) normal modes or partial waves which add up to the summed
backscattering (i.c. sonar) cross section displayed in Fig. 2 for a rubber coated, air-filled, spherical steel
shell in water, alf versus k,c(0 < k¢ <20).

We can now write S, in two alternative forms, depending on how we factor the terms in eqn
(29). These two forms are

S, = Ss'x) . _z_:_z_g"_ = ezwn (30)
and
-1_p-l )
S, =S0a —Fu__ o, 31

Zy — F,,-
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where,

h2k c)_ )
() _ _Bn 1 21(,.
S =~ e = e = (], (32a)

h ;2)'(,( 1€) _ e 26 =

n_ _
S = T ey = ©

[Saloco (32b)

__P D,
Fo=-Crict ph (33)
and
k,ch¥(k ,
zi=—n——‘,f". (k(,cl)C) (i=1,2). (34)

From eqn (30) it is clear that if p, > p, (i.e. a “soft” target compared to the ambient medium)
then, F, > 1 and S, - S¢. From eqn (31) if p, <p, (i.e. a “rigid” target much denser than the
ambient medium) then, F, <1 and S, » S{. Note that three phase angles §,, £, £, have been
defined above, by eqns (30)—(32).

An immediate consequence of the above limiting results is that if a structure with many
layers is covered by another layer, no matter how thin, of nearly zero (or nearly infinite) density
material compared to that of the outer medium, the echo from the entire structure will be
almost identical to that returned from a perfectly soft (or rigid) surface, regardless of which
other materials or internal structural components are contained inside that very tenuous (or
very dense) outer layer. The above follows immediately because only the density of that outer
layer (i.e. p,) has to be compared to the ambient density (i.e. p,) for the above limiting results to
be valid. In fact, this is what we have proved in the immediately preceeding paragraph.

The quantities S% and SV are the “backgrounds” associated with the shape of the
structure, the z (and z;') (i = 1,2) are proportional to the modal acoustic impedances of the
shell, while F, (or F;") are proportional to its modal mechanical impedance in either the soft or
rigid situations, respectively [34). The “‘resonances’ causing re-radiation are given by the zeroes
of the denominators of eqns (30) and (31), which in each case lead to the characteristic
equations

7i(x) = Fy(x$) or z7'(xY) = F,'(x) 35)

where x = k,c. To solve these equations is no simple task since each of the 9 x 9 determinants
D)', D' contains 54 non-vanishing elements, all containing numerous spherical Bessel and
Hankel functions (of possibly complex arguments.) The solutions will be the complex eigen-
frequencies of the problem, but since it is more convenient to deal with real resonance
frequencies, we solve instead

Re z;(x')) - F,(x{)=0 and Re z;'(x)- F;'(x)) =0 (36)

for the soft and rigid situations, respectively.
Simple algebraic manipulations suffice to show that the definition S, = exp[2i8,] implies that

S, — 1=2i sin §, exp (i5,), (37
that eqn (30) implies that
1= 216,.‘” F4) —ig® (.)]
8.1 [z.— P 42ie ™ sing (382)
and that eqn (31) implies that
S, —1=e2" [z_[—_;_.l:[ +2ie %" sin f,."’]. (38b)

SS Vol. 18, No. 12—D
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The magnitudes of the scattering amplitudes given in eqn (24), which we repeat here in a
more complete form

= [f(mP= | f;o f,,('n')r - |§ S (~1)"2n + Db, |2

are, therefore,

- 2n+1 _ '= |2n+l 2.}“3)[ 21— 23 s e kls)
ol = |5 S = ) = [P e oy 2 e sing? |

(39a)

for the soft case, and analogously

2 + ig tr - ’
lf"(ﬂ)|=' nx lem"”[l‘"‘ ~—E:elz| z—lem z"+2w “'-”smf"’]' (%)

for the rigid case. These are the partial waves (n =0, 1,2 and 3) displayed in Fig. 3. Equations
(39) are still exact and they can still be linearized in the now standard way of the Resonance
Scattering Theory[31], however, that will not be shown here. The exact form of eqns (39)
already shows how each partial wave contains two components, one associated with the
structural resonances that cause re-radiation, represented by the fraction in eqns (39), and the
other the shape factor or background, associated with reflection from an impenetrable structure
represented by the term with the sine functions. We note the following two valid relationships

S~ 1=2ie%" sin £ (402)
S~ 1=2i e sin £, (40b)

Therefore, in the soft and rigid cases respectively, the contributions from each of the shape
factors to the scattering amplitudes are

f ()] = %ﬂ 2i %" sin ﬁn“’l (41a)

1) = | 2 2 im0 (41b)

Analogously, the corresponding contributions from the re-radiating resonances are

el = | 2 e B2 - (2 L g, — (59— )| @)
o= [Pt e 2Lz < 2Ly g0y (420)

These components will be plotted separatedly in the next section. We note that both eqns
{41) or both eqns (42) represent the same result that has been split up into two components in
two different ways. Equations (41a) and (42a) represent the split in the soft case, while eqns
(41b) and (42b) in the rigid case.

A third and final situation requiring analysis occurs when the shape factor that should be
subtracted from the modal scattering coefficients in order to isolate the resonances is neither
rigid nor soft but somewhere in between these two extremes{31]. From eqns (27), (30) and (31)
it follows that the proper coefficients to use in the soft and rigid cases, respectively, are

b~ b = S, - S = SP =2, (452)
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2b, - by =S, —- S =850 -~r———1;‘_ - : (45b)

These are the quantities we have used in eqns (42) to construct their contributions to the
scattering amplitudes. It is simple to verify that for the situation somewhere midway between
the above two cases, the analogous result to be used is

1_ -1
Ab, — by =5, - S = 5. -——-————F“,_"';‘,,, (46)

where the quantities with bars are defined to be

Zi(x) = zi(x) ~ Fu(xg) (i = 1,2)
F.(x) = F(x) — Fu(xo), 47

and the midway shape-factor S is defined to be

zZ - F (X ) HE (5}
Sﬁm).ésis)?: 22~ FalXe) _ 2ig -0
LIy A ’ “8)

which is clearly unitary since it is quickly verified that
a = arg (2, — Fu(xo)) = — arg (22 ~ Fy(xo)). (49)
The explicit expression for S, in terms of the midway shape factor S is

{m} z2 F !

S, =8, gy 50)
which is analogous to eqns (30) and (31) for the rigid and soft cases. The quantities F,, 2,, and z,
are given in eqns (33) and (34). and x4 is a value of x for which F,(xo) is nearly constant. Plots
of F,(x) vs x show that in most cases this function is nearly constant almost everywhere except
near its singularities which are close to the resonances of the coated shell [which are found as
the roots of the real parts of the denominators of eqns (46) or (50)] due to the usual smallness of
the quantity Re (Z,)™". The choice of x, is not critical, and the counterpart of eqn (42) in this
midway case is

H{m)m( )& 2" +1 o2& 7! ‘2?1 +1
X

= —z“ [2b, - (87~ D]|. Gn
H

5. NUMERICAL RESULTS.

The first objective of this paper was to display the computed backscattering (i.e. sonar) cross
section of the coated shell as given by eqn (24) with b, given in eqn (18), as a function of the
acoustical size of the structure k,c, in the outer medium. Later we analyze the effect the three
viscous levels shown in Table 1 have on the above described spectral plot of the cross section.
The computations required to generate these graphs make use of routines we generated years
ago to evaluate spherical (and also standard) Bessel, Neumann and Hankel functions of
complex arguments and fractional (or integer) orders. The analysis is arbitrarily done for a
coated shell with an outer radius ¢ = 26.67 cm and k¢ varying up to a value of 20. This means
that the frequencies of the incident waves range from zero to about 18 kHz, which is a band
covering many cases of interest.

Figure 2 displays the plot of eqn (24) versus k¢ (0 = k ¢ < 20) assuming that the rubber in
medium (2) is elastic, but nonabsorbing. Twenty-five terms were kept in the sum used to
generate Fig. 2 to insure accuracy in the k,c-range considered there. Since the plot is the sum of
many (i.e. 25) partial-waves or normal modes, which interfere one with the next in a sensitive
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fashion, the plot exhibits many rapid oscillations, peaks, and deep minima which are ultimately
due to resonances excited in the shell and/or coating layers by the incident wave.

We will later show how the many oscillations present in Fig. 2 are damped out as the
viscous levels of the coating layer increase through the values shown in Table 1. The first five
partial waves that add-up to the cross section in Fig. 2 are displayed in Fig. 3forn=0,1,...4,
from top to bottom. These waves are the spectra of the modal contributions contained within
eqn (24), viz.

lfa)| = fl—c—(—n"(znﬂ)bn (52)

versus k,c, where b,, given in eqn (18) depends on the k,c in a complicated fashion, as it is
evident from inspection of the list of elements d; in Appendix A. We further note that the
square of the sum of the modal amplitudes defines the (normalized) cross section given in eqn
(24), viz.

2

=f(m)f = ol mc?. (53)

> fulm)
n=0

Each rapid oscillation appearing in Fig. 2 is caused by resonances present in these normal-mode
contributions shown in Fig. 3. Note for example the one near k,c = § in the plots of various
modes (i.e. n =1,2,3,4,...) which consequently manifests itself as a very large spike in Fig. 2.
Note that in view of eqn (53) the ordinates in Fig. 2 are the squares of those in Fig. 3.
Observation of Fig. 2 show regions (around k,c = 2 and 8) where the cross sectional values are
at least six times larger than those predicted by geometrical acoustics (i.e. mc?). These are
frequency bands at which the target is highly “visible” in spite of the presence of the outer
absorbing layer. One reason for this result is that for the plots shown in Figs. 2 and 3, the
coating layer was assumed non-absorbing, and therefore, completely incapable of reducing the
backscattered return. The absorptive behavior of the coating is investigated in later figures.

The quantitative effect of coating viscosity on the (summed) cross section shown in Fig. 2
without viscous effects, is now shown in Fig. 4. The three shown viscous levels correspond to
the three (non-vanishing) sets of values in Table 1. These viscous parameters F, F¥ make the
arguments of the Bessel functions in the coating layer (viz. k4, k,,c) take on complex values
related to kic through eqns (26). As the absorption levels increase, certain resonance features
of the cross section begin to get damped out. Note for example the large spike near k,c = 8 in
Fig. 2. In the top portion of Fig. 4, that spike is much reduced, while in the central and bottom
parts of Fig. 4, it is totally gone. Note that at these higher viscous levels there are some spikes
in the high-frequency end (i.e. for k,c = 18) that were not present in Fig. 2. These are caused by
numerical instabilities in the subroutines to evaluate Bessel functions of complex arguments
with large moduli, and should not be attributed to any type of cross sectional enhancement
effect due to the coating at all. Figure 5 shows the quantitative effect of viscous absorption on
the first four modes contained within the cross section. As we increase the viscous levels
through the values listed in Table 1, we note that some of the resonance features present in the
modal plots are damped out and eventually disappear. The modal backgrounds or shape factors
to be discussed and subtracted in Fig. 6 (left column) are seen to remain unaffected by
increasing absorptive levels. Some of the numerical instabilities mentioned earlier in the
discussion of Fig. 4 are also present at the higher viscous levels (right column), particularly at
the high-frequency end (i.e. k,c = 18) of Fig. 5. Some resonance features clearly visible in the
left column, where they have been marked by rectangular boxes, eventually disappear at the
higher viscous levels shown in the right column.

The material combinations of the bilaminar shell studied in this paper such that the shell has
an overall acoustic behavior close to the rigid. This conclusion emerges from the following
analysis of Figs. 6 and 7 where we attempt to isolate the re-radiation or resonance components
contained within each mode (n =0, 1,2, ...) by subtracting first the rigid shape factors (Fig. 6,
left column), and then the soft ones (Fig. 7, left column) from the modal contributions to the
cross section plotted earlier in Fig. 3.
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Fig. 4. The quantitative effect of coating absorption on the (summed) sonar cross section. As the absorption
levels increase, the amplitudes of the resonance spikes decrease from their original values in Fig. 2, where

no absorption was accounted for. For higher absorption and higher frequencies (i.e. k,¢ = 18) numerical
instabilities start to develop in the plots.

112 If Moi?
640 6. of [} B
n=0 3 3. o
0 Al FawVie:Vla Valid eV o Vialava it
0.00 4.00 8.00 1200 16.00 20.00 0.00 4.00 800 12.00 16.00 20.00 0.00 4.00 8.00 12.00 16.0020.00
if,12 1#412 |f1|z
T N I
n=13 r o
0. ki€ |- k{C kqc
.00 4.00 8,00 12.00 16.00 2000 0.00 4.00 8.00 12.00 16.00 20.00 0.00 400 8.00 12.00 16.00 20.00
52 Itz ot
6. T 6. I :
N 3
o Ly 11 L%y, e Ll 1 1Y
0.00 400 8.00 1200 16.00 20,06 0.00 400 8.00 12.00 6.0 20.
X
6. t—|—/\—f\—pn— 6.
3
0. L1 100 | k1c L1 _k.‘c L_{ I & k1€
0.00 4.00 8.00 12.00 16.00 20.00 0.00 4.00 8.00 12.00 16.00 20.00 0.00 4.00 8.00 12.00 18.00 20.
F=0F =0 F=1283x10% F,= 6x 107 F= 8762 x 10° F; = 107,

Fig. 5. The quantitative effect of coating absorption on each one of the partial waves (n=0,1,2,3)

contained within the summed cross section of Fig. 2. Increasing the coating viscosity (left to right columns)

does not alter the “backgrounds” but it damps out certain clearly visible (note boxes) resonances
superimposed on them.
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Fig. 6. Extraction of the “rigid resonances” of the bilaminar shell (right column) from the first five

(undamped) partial waves displayed earlier in Fig. 3, by subtraction of the corresponding modal “rigid

backgrounds™ (left column), of a perfectly rigid but otherwise identical spherical structure of dia. 2c. These
rigid resonances seem to group themselves into two (broad and narrow) overlapping subfamilies.
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Fig. 7. Subtraction of the modal (n =0, 1) “soft backgrounds™ (left column) of a perfectly soft spherical

structure of dia. 2c from the modal contributions shown earlier in Fig. 3, to determine the type of residuals

that are left over (right column). (These residuals would have been “soft™. This is not the case here since
the structure in this instance behaves as “rigid”, and these residuals are not resonances at all.)
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The left column of Fig. 6 displays the modal shape factors in the rigid case, as given by eqn
(41b) for the first five (n =0, 1,...,4) modes. The right column in Fig. 6 displays the rigid
re-radiation (or resonance) portions as given by eqn (42b). The resulting modal resonances are
seen to group themselves in two overlapping families which are broad and narrow,
respectively, These are the resonances of the bilaminar shell under study. Some of these are
resonances of the shell and some are of the coating in a way that we will investigate in further
detail in the future.

If the soft shape factors derived in eqn (41a) are subtracted from the modal contributions
shown in Fig. 3 in an attempt to isolate “soft resonances” in a way analogous to that followed
to generate the rigid resonances in Fig. 6, the procedure yields results that do not resemble
resonances of any kind. The soft shape factors for the first two modes (n =0, 1) are given in the
left column of Fig. 7, and after they are subtracted from the corresponding modes in Fig. 3, the
resulting residuals are displayed in the right column of Fig. 7. These residuals do not look like
resonances, and in fact, they are not resonances at all. One should not feel disappointed
because a given structure does not have both rigid and soft resonances. In fact, that is never the
case since only one of several possible behaviors can actually occur for a given structure. In the
present case, only the rigid resonances have been shown to be the suitable ones. A third, still
possible alternative is that the structure has neither one of those two types of resonances. It is
for this alternative that we discussed the case of “midway resonances” in the text from eqn (45)
on. To test if the structure has this third type of resonances corresponding to a behavior
somewhere between rigid and soft, we produced Figs. 9 and 10 below.

Figure 8 compares the two extreme cases of shape factors that we have discussed thus far.
This background comparison is illustrated by the second (i.e. n =2) normal mode. The soft
shape factor is shown in solid lines while the rigid is shown in dashed lines, both versus k;c = x.
For any given mode, purely rigid and purely soft backgrounds always appear interlaced, as it is
typically shown in this plot for n =2. Intermediate or “midway” shape factors are shifted
relative to these two basic and extreme cases, and they appear displaced somewhere between
the two. The plots in Fig. 8 are obtained using eqns (41).

The only case remaining to be investigated is that of the midway resonances. The quantity
F,(x) given in eqn (33), which is (inversely) proportional to the modal mechanical impedance of
the coated shell, can be plotted versus k,¢ = x with the result shown in Fig. 9 for the second
{n = 2) mode. Away from the three singularities present in the range 0 < x = 20 this is a slowly
varying (quasi-constant) function, and the methodology of the midway background discussed at
the end of Section IV can be applied to it. Inspection of Fig. 9 shows that F,(x,) = 2.5, and using
eqn (51), the “‘midway resonances™ of the second (n = 2) mode have been plotted in Fig. 10 and
they can be generated analogously for any other mode. Comparing the rigid resonances in Fig. 6
{n = 2, right column) with Fig. 10 obtained using the midway resonance procedure, we note that
the results are quite similar. Minor differences such as a first resonance slightly narrower than
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Fig. 8. Comparison of the soft (solid line) and the rigid (dashed) backgrounds for the second (n = 2) mode

contained within the sonar cross section, as a function of non-dimensional frequency kc. For all modes

contributing to the cross section, rigid and soft backgrounds are interlaced as typically shown here for the
coated, air-filled, spherical, shell in water under analysis.

Fig. 9. Plot of Re(F,) vs. kyc = x, where F,, given in eqn (33), is (inversely) proportional to the modal

(n =2) mechanical impedance of the coated shell. Away from its singularities, this function is ap-

proximately constant and Fx{(x) =2.5. The calculation is for the same coated, air-filled, spherical, steel shell
in water considered here.
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Fig. 10. Graph of the “midway-type” resonances present in the second (n=2) mode versus non-
dimensional frequency k¢, from eqn (51). This graph is very close to the n = 2 rigid-resonance case shown
in Fig. 6. As obtained by this approach leading to eqn (51), all other modes (n# 2) contain resonances very
close to the rigid resonances displayed in (the right column of) Fig. 6, because for this combination of
materials, this coated, fluid-loaded, structure has an overall acoustic behavior relatively close to the rigid.

that shown in Fig. 6 (n = 2), are noticeable, but the overall graph is identical to that in Fig. 6 for
the second mode as well as for all the others. Various choices of x, show that its value is not
critical. Therefore, the “midway resonance” procedure leading to eqn (51), for the material
combination chosen here, produces almost the same resonances isolated earlier in the rigid case
(Fig. 6). Thus, the rigid acoustic behavior is the most accurate descriptor of the bilaminar
situation under analysis here. If the midway shape factor that yields the midway resonances of
the n =2 mode shown in Fig. 10 had been plotted, we would see a graph in-between the rigid
and the soft backgrounds shown in Fig. 8 but sufficiently close to the rigid one to further
provide the overall quasi-rigid acoustic behavior of this complex shell structure. In other words,
the true acoustic behavior of the structure is not sufficiently far away from the rigid “extreme”
to merit treatment under the “midway resonance procedure”, and thus, this approach
reproduces the earlier rigid behavior.

The very realistic situation modelled and analyzed here admits modal shape factors as
simple as those associated with the rigid behavior. Subtracting them from the modes, the
correct resonances are isolated. We have seen other instances[31] where the soft backgrounds
are equally suitable for very adequate descriptions of the scattering mechanisms involved.
Thus, the neighborhoods near the soft and rigid extremes, where the Resonance Scattering
Theory so far has been shown to have most of its usefulness, are in fact quite wide. We have
shown here another example of the many realistic situations that fit quite well within those
neighborhoods. Thus, there is left only a narrow gap midway between the two extremes,
requiring further study.

6. CONCLUSIONS

We have developed an analytical model to predict the global scattering of acoustic waves
from spherical, gas-filled, elastic shells covered with layers of viscoelastic materials. The model
is exact insofar as the equations of linear elasticity/viscoelasticity govern the behavior of the
submerged bilaminar shell structure. All absorption levels in the outer absorbing layer can be
accounted for. Even though this is a coupled problem due to the fluid loading, we have
successfuly separated shape factors and re-radiation (i.e. resonance) modal contributions, in the
manner of the Resonance Scattering Theory (RST), and we have quantitatively studied some
aspects of the damping effects the absorptive layer has on the modal resonances, considering
each mode separatedly, or all added together. The particular steel-rubber bilaminar sheil used
for the displayed calculation has been shown to acoustically behave close to the rigid extreme
and this has been further substantiated using the midway-resonance approach also presented
here. We emphasize for clarity that there is sound penetration into the structure, since it was
modelled as an elastic/viscoelastic shell rather than rigid. Had it been purely rigid, each normal
mode contained within the cross section would have consisted only of shape factors (or
backgrounds) and there would have been no resonances {or re-radiated) portions. The fact that
there are appreciable (rigid-type) resonances (Fig. 6 right column) within each mode is a
measure of the departure of the structure’s acoustic behavior from that of a perfectly
impenetrable (rigid) body of the same shape. Our earlier work on RST has shown that sound
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penetration into any target takes place only through a countable set of discrete spectral
windows centered at the (rigid) resonances of the fluid-loaded structure that we successfuly
isolated mode-by-mode in Fig. 6 These peaks are all numerically predicted by the roots x& of
the second one of eqns (35). We envison further work where the exact elasticity/viscoelasticity
equations used here, are judiciously replaced by the simpler sets of equations of suitable Shell
Theories. The present work will be the standard against which all those approximations will be
compared.
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APPENDIX A

The normalized elements of the 10 x 10 matrix D

The normalization procedure followed in this spherical case is identical to that used earlier for a submerged coated
cylinder[23]. It turns out that in the same order as they come-out of the boundary conditions, the coefficients of the ten
resulting equations have dimensions of (pressure)’, i.e. (dyn/cm®)*. Multiplying certain rows and columns of the resulting
determinants by suitable constants, it is possible to non-dimensionalize the sixty non-zero elements. The final result is
given below:

dy= ;‘:—; 2,c?hV(kic)

diy =~ 4Kg,Cia"(x0,0) + [20(n + 1) = i5,62jn(ka,C)
diy = = 4K4,C9n'(Kay0) + [20(n + 1) — ic2,7) yalKa,©)
dye==2n(n + Dija(k,€) — &4 Cia'(1,C)]

dis =~ 2n(n + Dya(x,,C) ~ ks, CYalx5,0)]

dyy = ~kich(kc)

dyy = kg, Cj"(ka,C)

23 = Kg,C¥n'(Kg,C)

dye = n(n + Djalky,c)

dys = n(n + 1) ya(ks,€)

d52 = Ujn(KayC) = KayCin'(Kk4,C)]

33 = 2 (K4, C€) = Kgy€¥n'(K4,C))

d3y = 26,030 (K,,€) + {6 5,67 = 2n(n + 1) + Qjalx,,0)
dss = 2K, 098 (K0y€) + [K3,67 ~ 20(n + 1) + 20y, (ks .6)
di2 = K4bjy'(x4,b)

dg= Kd,an '(Kd,b)

du=n(n+ Dja(x,b)

das = n(n + Dya(x;,b)

dus = —ke;bjn'(ka,b)

dyy = = ka,byn'(ka,b)

deg= - n(n+ Djn(k,,b)

dg =~ n(n + 1)y, (k, b)

ds2 = — ju(Kab)

ds3 = = yalKgb)

dyy = = Kpbja' (kD) = fa(Kc;,b)

dss=— Klzbyﬂ’('(lzb) - yn("s;b)
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dss = ja(ka,b)

ds7 = ya(ke,b)

dsg = ksybjn'(Ks,b) + jalks,b)
dsg = kybyn'(ke,b) + ya(ky,b)

1 . .
oz = (b~ bbb () + 20+ 1)~ k3b lin(ke,b)}
des = #L (ks iwpto -4 bya (e, + [20(n + 1) = k2,52 ya (kb))

dou= 2n(n+1)
He,

(""fz twu‘,z)[K,,bJ..'(K,-,b) ln(xr-b)]

des = w ey = 0t Y KigbYnssb) — alis )]
deg = 4kybjn'(ka,b) — [2n(n + 1) = k3,b%)jn(ka,b)

der = 4kabya'(kab) — [2n(n + 1) = k7,bjn(ka,b)

des = 2n(n + Dja(ks,b) = kg, bjn'(k;,b)]

des = 2n(n + D{ya(ky,b) - k, by, 'k, b)]

d12 = Ajn(x4,b) — K4,bjn'(ka,b)]

dr3 = 2 yn(ka,b) — ka,bys'(k4,b))

da = 2, bjin'(ky,b) + [k 3,02 = 2n(n + 1) + 2ja(k,b)
d1s = 26,byn'(1,b) + [3,07 = 2n(n + 1) + 2 ya(x,,b)

drg=- “—2;%;#—‘& CnCkayb) ~ ke bi' (ke )]

= = e k)~ kb ()

= ey e .
dn=-p2 o, (2 (k) + (ki,b? = 2n(n + 1) + 2)ja(k, b)}

dry = —=—# S {2kebya'(kyb) + [KLb® — 2n(n + 1)+ 2ya (kb))

das = — dky,aju'(ks,@) + [2n(n + 1) - k3 a%)ja (ks 0)
dyy = — 4k,ay,'(ke,a) + [2n(n + 1) - k3,a’1ya(ky,a)
dyg = = 2n(n + Dlija(k,,0) ~ k,,aj 'k, a)]

dgy = — 2n(n + Dlya(k,,a) - ky,ay,'(k;,a)]
dg o= Le ki,a’in(ha)
4]

dog = ky,ajn'(kssa)

dyy = ka,aya'(ksa)

dog = n(n + Djn(k,,a)

dog = n(n + 1)y,(k,,a)
dy 10 = — keaju'(kea)
dios = in(ka,a) — kg ajy'(kga)l
dio7 = 2yn(ka,a) — kayayn'(keya)]
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dios = 2k, aja’(k,,@) + k3,7 - 2n(n + 1)+ 2ja(ky,a)
dyos = 2k,ays'(k,,a) + (k3,0 = 2n(n + 1) + 2y, (k, a)
and finally,

At=- % k5 intkic), AT = kicjy'(kic).

As given here, all these elements are not only non-dimensionalized, but also they have been reduced to their simplest
forms. Note that they depend only on the spherical Bessel (or Neumann or Hankel) functions, and at most on their first

derivatives.



